The Lifting of an Exponential Sum to a Cyclic Algebraic Number Field of a Prime Degree
نویسنده
چکیده
Let E be a cyclic algebraic number eld of a prime degree. We prove an identity which lifts an exponential sum similar to the Kloosterman sum to an exponential sum taken over certain algebraic integers in E.
منابع مشابه
The Lifting of an Exponential Sum to a Cyclic Algebraic Number Field of Prime Degree
Let E be a cyclic algebraic number field of prime degree. We prove an identity which lifts an exponential sum similar to the Kloosterman sum to an exponential sum taken over certain algebraic integers in E.
متن کاملThe Newton Polygon of Gauss-Heilbronn Sums
Let p be a prime, Zp the ring of p-adic integers, Qp the field of p-adic numbers, and Qp the algebraic closure of Qp. Let Fp be the algebraic closure of the finite field Fp, and ω : Fp → Qp the Techmüller lifting. Let q = pa, χ a multiplicative character of Fq into Q, and ψ a character of Zp[μq−1] into Q of exact order pn > 1, where μr is the set of r-th roots of unity in Qp. For simplicity, we...
متن کاملThe Sum Graph of Non-essential Submodules
Throughout this paper, R will denote a commutative ring with identity and M is a unitary R- module and Z will denote the ring of integers. We introduce the graph Ω(M) of module M with the set of vertices contain all nontrivial non-essential submodules of M. We investigate the interplay between graph-theoretic properties of Ω(M) and algebraic properties of M. Also, we assign the values of natura...
متن کاملON COMULTIPLICATION AND R-MULTIPLICATION MODULES
We state several conditions under which comultiplication and weak comultiplication modulesare cyclic and study strong comultiplication modules and comultiplication rings. In particular,we will show that every faithful weak comultiplication module having a maximal submoduleover a reduced ring with a finite indecomposable decomposition is cyclic. Also we show that if M is an strong comultiplicati...
متن کاملThe Main Eigenvalues of the Undirected Power Graph of a Group
The undirected power graph of a finite group $G$, $P(G)$, is a graph with the group elements of $G$ as vertices and two vertices are adjacent if and only if one of them is a power of the other. Let $A$ be an adjacency matrix of $P(G)$. An eigenvalue $lambda$ of $A$ is a main eigenvalue if the eigenspace $epsilon(lambda)$ has an eigenvector $X$ such that $X^{t}jjneq 0$, where $jj$ is the all-one...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007